Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling

نویسندگان

  • Victor J. Barranca
  • Gregor Kovačič
  • Douglas Zhou
  • David Cai
چکیده

Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a compressive imaging system using laboratory and natural light scenes.

Compressive imagers acquire images, or other optical scene information, by a series of spatially filtered intensity measurements, where the total number of measurements required depends on the desired image quality. Compressive imaging (CI) offers a versatile approach to optical sensing which can improve size, weight, and performance (SWaP) for multispectral imaging or feature-based optical sen...

متن کامل

Sparse reconstruction of compressive sensing MRI using cross-domain stochastically fully connected conditional random fields

BACKGROUND Magnetic Resonance Imaging (MRI) is a crucial medical imaging technology for the screening and diagnosis of frequently occurring cancers. However, image quality may suffer from long acquisition times for MRIs due to patient motion, which also leads to patient discomfort. Reducing MRI acquisition times can reduce patient discomfort leading to reduced motion artifacts from the acquisit...

متن کامل

Using Correlated Subset Structure for Compressive Sensing Recovery

Compressive sensing is a methodology for the reconstruction of sparse or compressible signals using far fewer samples than required by the Nyquist criterion. However, many of the results in compressive sensing concern random sampling matrices such as Gaussian and Bernoulli matrices. In common physically feasible signal acquisition and reconstruction scenarios such as super-resolution of images,...

متن کامل

Compressive imaging: hybrid measurement basis design.

The inherent redundancy in natural scenes forms the basis of compressive imaging where the number of measurements is less than the dimensionality of the scene. The compressed sensing theory has shown that a purely random measurement basis can yield good reconstructions of sparse objects with relatively few measurements. However, additional prior knowledge about object statistics that is typical...

متن کامل

2D Normalized Iterative Hard Thresholding Algorithm for Fast Compressive Radar Imaging

Compressive radar imaging has attracted considerable attention because it substantially reduces imaging time through directly compressive sampling. However, a problem that must be addressed for compressive radar imaging systems is the high computational complexity of reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D) normalized iterative hard thresho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016